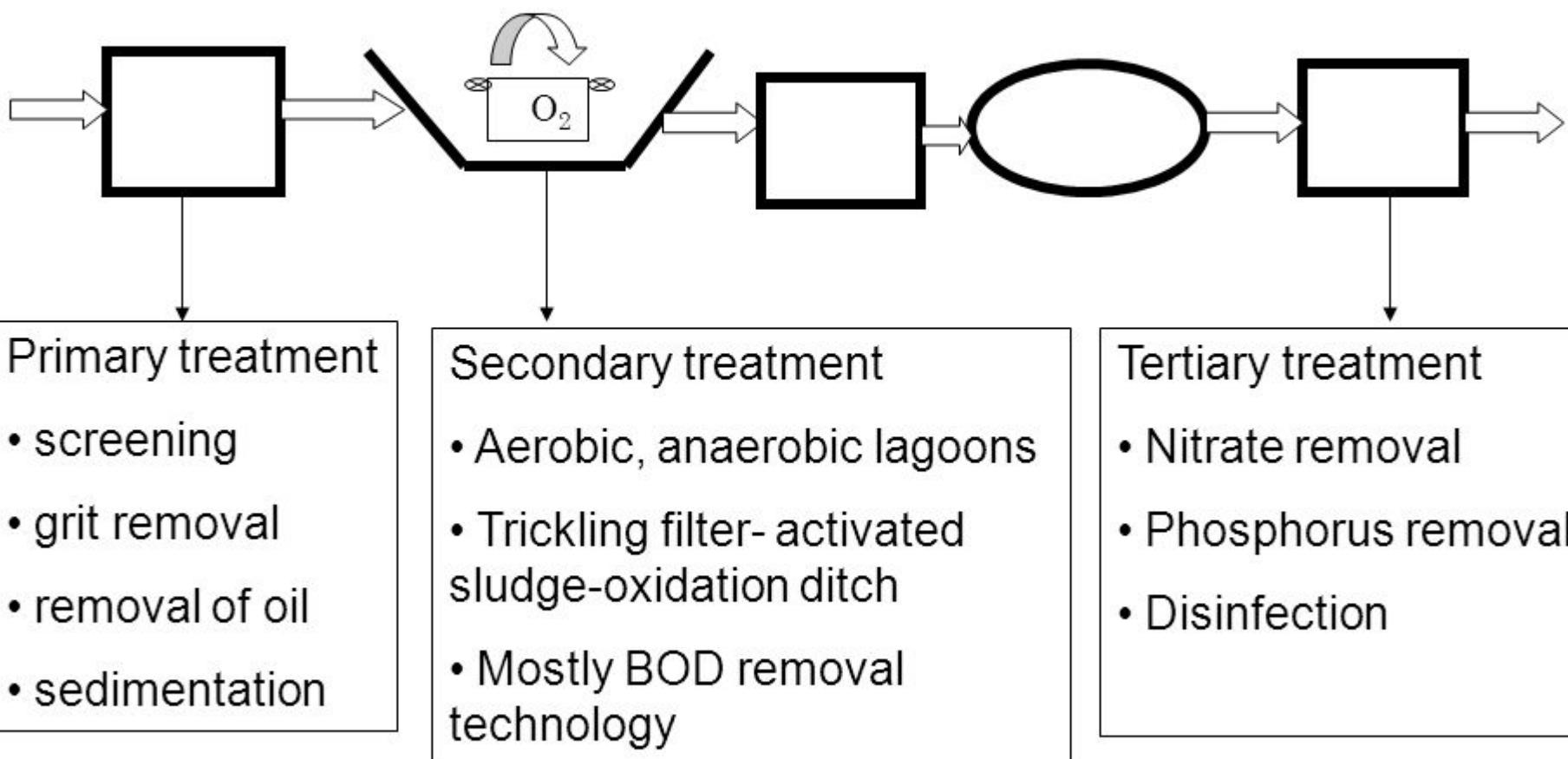


The use of immobilized microbial cells for wastewater treatment

Lecturer: Samet Raushan, PhD student

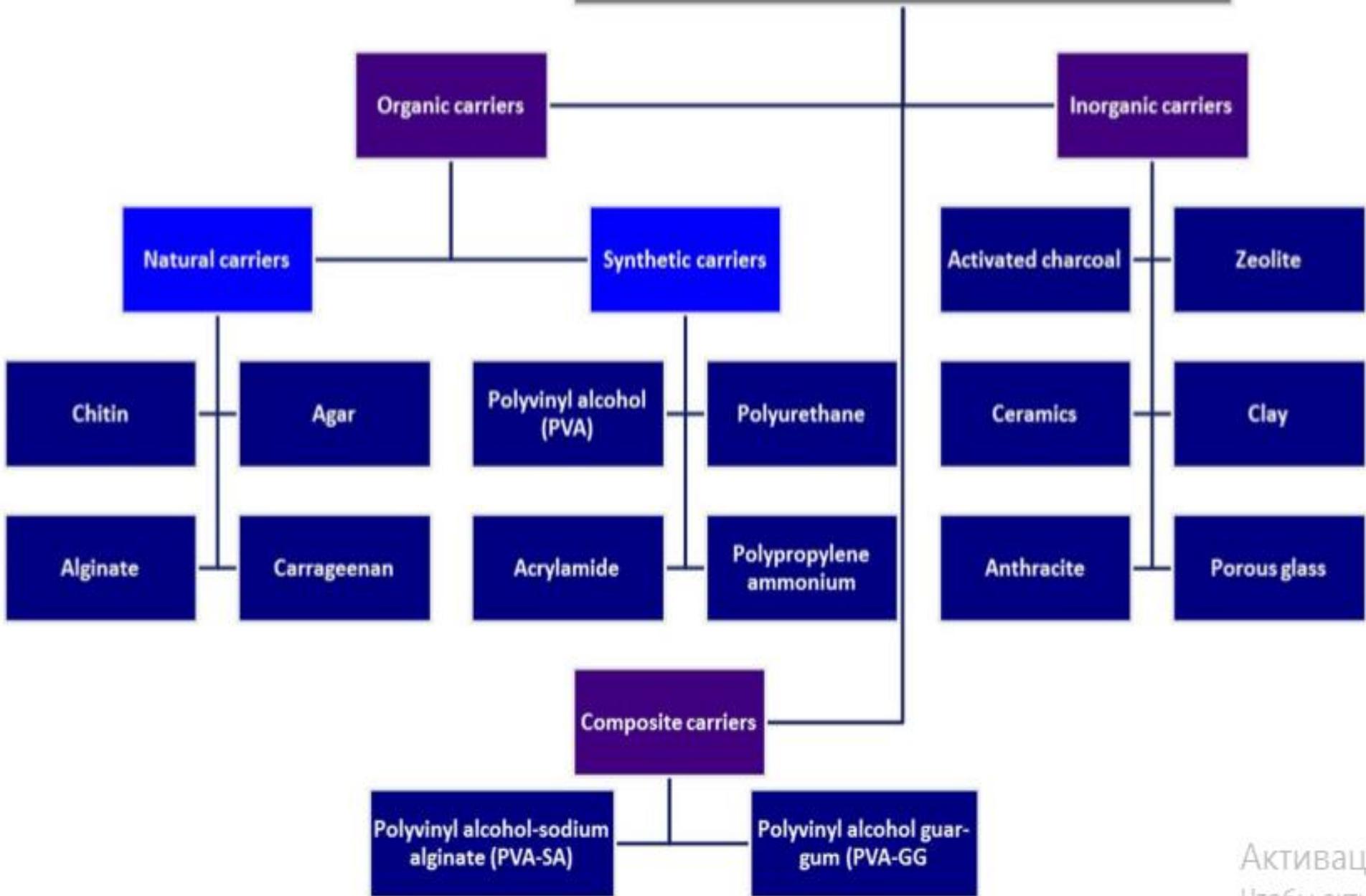

Review Questions

- What is the **immobilization**?
- What are the **methods** of immobilization?
- What are the Industrial **applications** of immobilized cells?
- What is **Wastewater Treatment**?

What is Wastewater Treatment?

- Wastewater treatment is the process of converting wastewater - water that is no longer needed or is no longer suitable for use - into water that can be discharged back into the environment.
- It's formed by a number of activities including bathing, washing, using the toilet, and rainwater runoff.
- Wastewater is full of contaminants including bacteria, chemicals and other toxins.
- Its treatment aims at reducing the contaminants to acceptable levels to make the water safe for discharge back into the environment.

Wastewater Treatment Processes

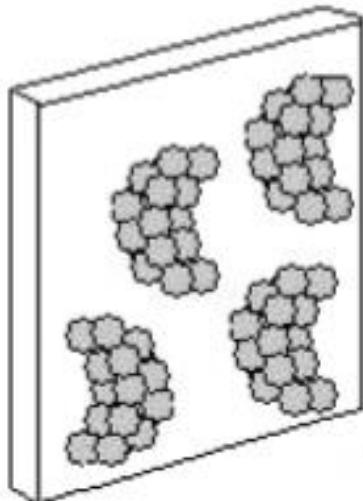


- There are several methods for treating industrial wastewater such as mechanical, biological and chemical methods.
- Biotechnological processes, which involve utilizing microorganisms with the objective of degrading wastewater contaminants, have been widely applied for wastewater treatment purposes.
- Researches proved that biological treatment strategy is cost-effective, which does not require the addition of any dangerous chemicals and helps in a complete destruction of biodegradable pollutants.
- On the other hand, employing microorganisms in the removal of contaminants from wastewater is often associated with the problem of their separation difficulty after treatment.

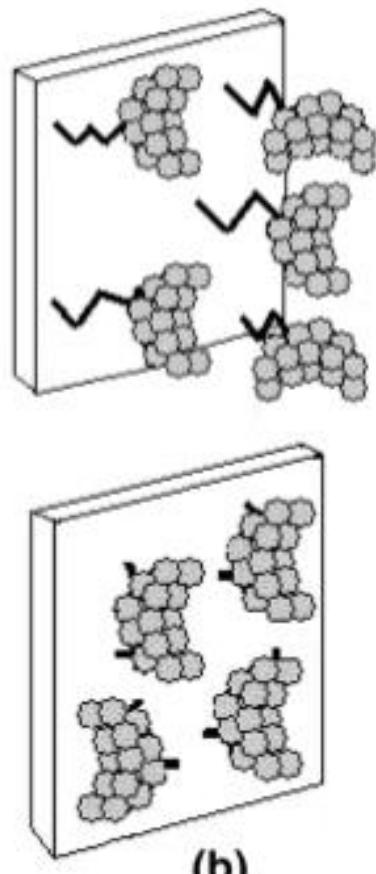
- Industrial application of biotechnological strategies is limited by two main factors: *the lack of long-term operational stability* and *the difficult recovery and reuse of the cells*.
- Therefore, cell immobilization, which represents the restriction of cell mobility by chemical or physical means, can overcome these drawbacks.
- The application of cell immobilization technology in the field of wastewater treatment is gaining importance in that it provides several advantages compared with biodegradation using free cells, such as *providing high biomass, cell reuse, high mechanical strength, high resistance to toxic chemicals, improving genetic stability and eliminating cell washout problems*

- The following immobilized systems were employed for different types of wastewater and have shown the ability to a high extent degradation:
- microalga (*Isochrysis galbana*) biomass was immobilized via entrapment into alginate gel,
- ammonia-oxidizing bacteria were immobilized into calcium alginate matrix, and
- *Pseudomonas putida* was immobilized in polyvinyl alcohol (PVA) particles.

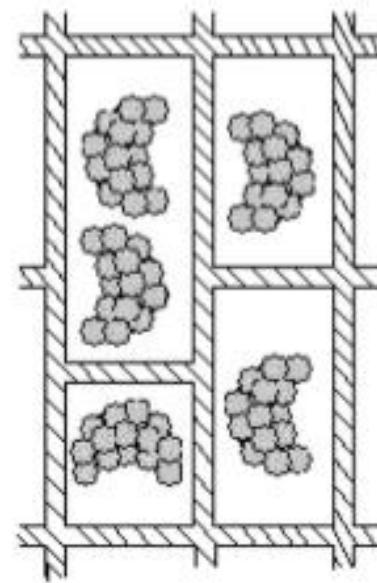
Immobilization carriers

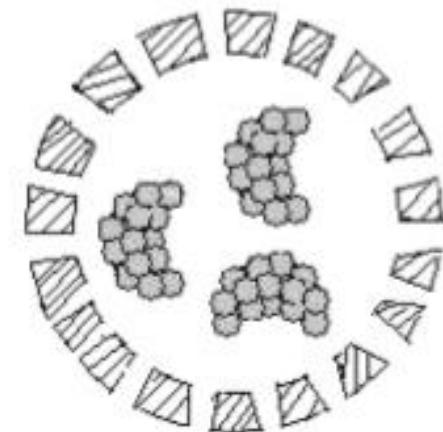


Активаци


Чтобы акти

ровать "При


- Different cell immobilization methods have been applied to bind microorganisms on carriers using artificial ways


(a)

(b)

(c)

(d)

Cell immobilization techniques

Chemically

Adsorption

Covalent binding

Physically

Entrapment

Encapsulation

1. Treatment of refractory organics wastewater
2. Treatment of wastewater containing heavy metal ions
3. Treatment of nitrogen and phosphorus in wastewater
4. Decolorization of industrial dyes

Treatment of refractory organics wastewater

- Refractory organic compounds are known to be difficult to biodegrade and exhibit a low value for the biological oxygen demand to chemical oxygen demand ratio
- Refractory organic compounds, such as phenol, cyanide and aniline, are not efficiently degraded via conventional biological wastewater treatment
- This is due to the long period required for the growth of microorganisms; they are also difficult to exist in biological treatment structures.

Microorganism	Degraded material	Immobilizing matrix
<i>Pseudomonas putida</i>	Phenol	Polyvinyl alcohol (PVA) gel
<i>Bacillus</i> cells	Phenol	Polyvinyl alcohol-sodium alginate (PVA-SA)
		Polyvinyl alcohol-guar gum (PVA-GG)
<i>Klebsiella oxytoca</i>	KCN (Cyanide)	Alginate cellulose triacetate
<i>Pseudomonas putida</i>	Phenol	Polyvinyl alcohol (PVA)
<i>Pseudomonas putida</i>	Phenol	Polyvinyl alcohol (PVA)
<i>Bacillus</i> species	Phenol	Tea waste biomass
<i>Pseudomonas fluorescens</i>	Ferrous(II) cyanides complex	Calcium alginate
<i>Pseudomonas putida</i>	Phenol	Alginate
<i>Flavobacterium</i> species	Pentachlorophenol	Polyurethane
<i>Ralstonia picketii</i>	Phenol	Polyvinyl alcohol (PVA)
<i>Acinetobacter</i> species strain PD12	Phenol	Polyvinyl alcohol (PVA)
<i>methanogenic consortium</i>	Phenol	Agar
<i>Pseudomonas putida</i> BCRC14349	Phenol, trichloroethane	Chitosan
Strain XA05 and PG03	Phenol	Polyvinyl alcohol (PVA)
<i>Pseudomonas putida</i>	Phenol	Calcium Alginate
<i>Candida</i> species and <i>Pseudomonas</i> species	Phenol	Activated carbon
<i>Pseudomonas putida</i>	Cyanides, cyanates, and thiocyanates	(Agar, alginate or carrageenan)
<i>Pseudomonas putida</i>	Phenol <i>o</i> -, <i>p</i> - and <i>m</i> -cresols	Polyvinyl alcohol (PVA)
<i>Pseudomonas putida</i>	<i>p</i> -cresol	Polyvinyl alcohol (PVA)

Treatment of wastewater containing heavy metal ions

- Most types of industrial wastewater contain considerable amounts of **toxic metal ions** such as cadmium, mercury, lead and copper, which can cause serious health concerns by producing **free radicals**.
- Among all types of microorganisms used for bioremediation purpose, **microalgae** provide a high capacity to remove heavy metal.

Microorganism	Removed metal	Immobilizing matrix
<i>Chlorella</i>	Ni, Zn, Cd	Alginate
<i>Chlorella vulgaris</i>	Cu, Ni	Alginate
<i>Chlorella vulgaris</i> <i>Scenedesmus acutus</i>	Zn, Cd, Cr	Carageenan beads Polyurethane foam
<i>Chlorella emersonii</i>	Mercury	Agarose beads Agar beads Alginate beads
<i>Chlorella species</i>	Uranium	Polyacrylamide gels
<i>Stichococcus bacillaris</i>	Lead	Silica gel
<i>Pilayella littoralis</i>		
<i>Chlamydomonas reinhardtii</i>	Uranium	Carboxymethyl cellulose (CMC) beads
<i>Chlorella vulgaris</i>	Hg	Silica gel
<i>Tetraselmis chui</i>	Cu, Cd	Alginate
<i>Aulosira fertilissima</i>	Ni, Cr	Glass beads
<i>Penicillium citrinum</i>	Cu(II)	Calcium alginate
<i>Bacillus subtilis</i>	Cu(II)	Chitosan
Microalga (<i>Isochrysis galbana</i>)	Cr(III)	Alginate gel
Algal cells (<i>Pediastrum boryanum</i>)	Cr(VI)	Alginate Alginate-gelatin
Bacterial strain (<i>Corynebacterium glutamicum</i>)	As(III), As(V)	Neem leaves/MnFe ₂ O ₄ composite
<i>Bacillus</i> species	Cr(VI)	Tea waste biomass
Modified sludge biomass (MSB)	Cu(II) Cr(VI)	Calcium Alginate Polyvinyl alcohol (PVA)

Treatment of nitrogen and phosphorus in wastewater

- Nutrients (NH_4^+ , NO_3^- and PO_4^{3-}) are considered the main factors leading to eutrophication in natural waters when wastewater containing nutrients run into lakes and rivers
- Megharaj el al. (1992) investigated the efficiency of two types of soil microalgae, *Chlorella Vulgaris*, and *Scenedesmus bijugatus*, to remove ammoniacal nitrogen. Cells of the microalgae were immobilized by entrapment into calcium alginate beads. Result: 71–79% of NH_4^-N was removed.

- Dong et al. (2014) studied the removal of ammonia by *Ammonia-oxidizing* bacteria immobilized on sodium alginate. Ammonia removal rate of 89.51% was achieved.
- Another study was conducted by Jaysudha and Sampathkumar (2014) to examine the removal of phosphate, nitrate and ammonia using free and immobilized marine microalgae, *Chlorella salina*, while immobilization was carried out in sodium alginate matrix.
- It was found that immobilized cells absorbed 99.39% of phosphate, whereas free beads and free algal cells, respectively, removed only 37.41% and 81.94% of phosphate. Likewise, 98.72, 65.83 and 43.71% of nitrate were removed by immobilized cells, free algal cells and without microalgal beads, respectively. Finally, 98.54% of ammonia was absorbed by immobilized cells when compared to free algal cells and algae-free beads in 62.04% and 24.94%, respectively.

% Removal

120

100

80

60

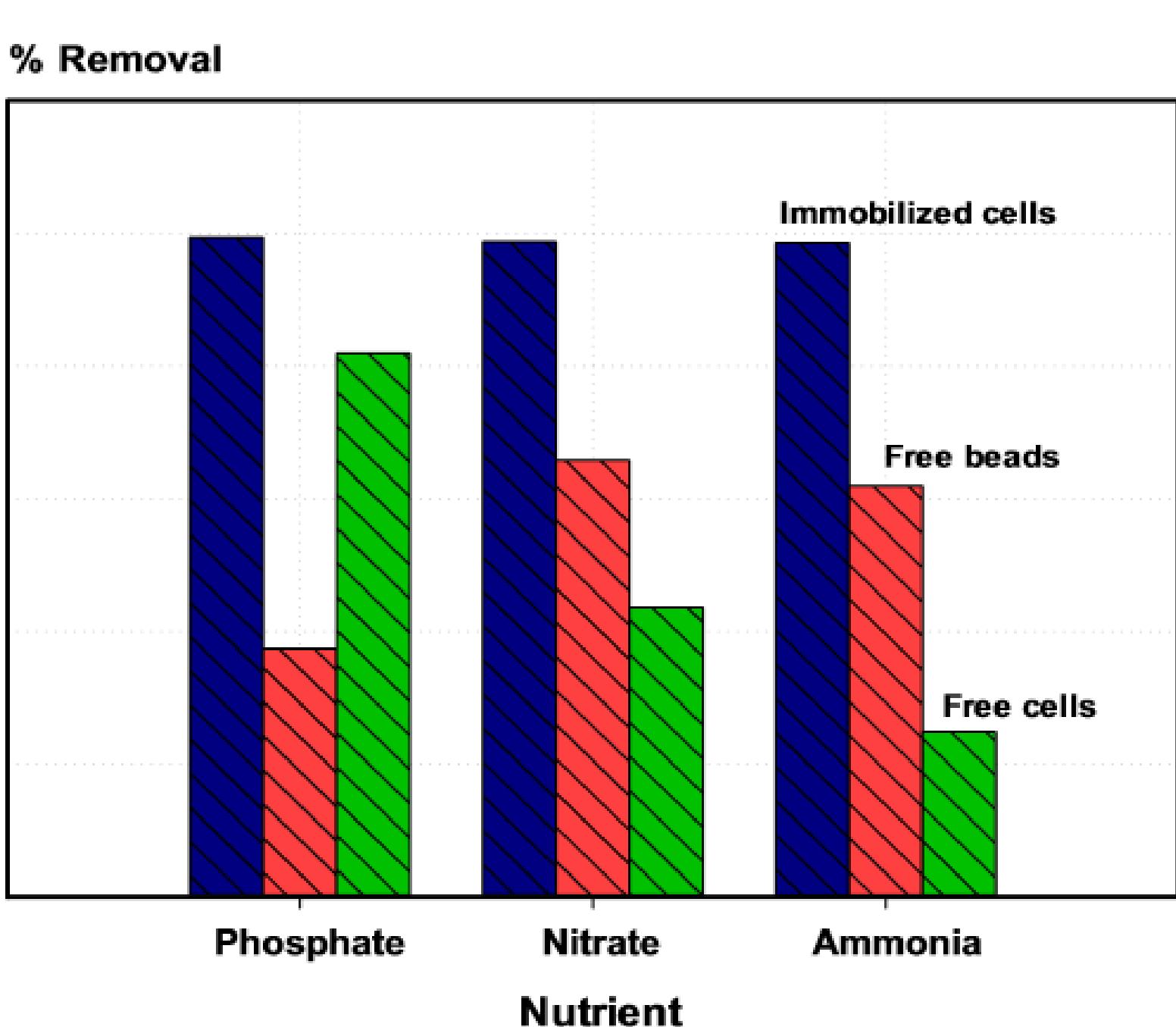
40

20

0

Immobilized cells

Free beads


Free cells

Phosphate

Nitrate

Ammonia

Nutrient

Microorganism	Application	Immobilizing matrix
<i>Photosynthetic</i> Bacteria	Nitrates	Na-Alginate PVA
Microalgae	Nutrients	Agar-alginate algal blocks (AALB)
Nitrite-oxidizing bacteria (NOB)	Nitrite	Biopolymeric chitosan
Ammonia-oxidizing bacteria	Ammonium	Sodium alginate
Nitrifier cells	NH ₄ -N	Polyvinyl alcohol and sodium alginate
<i>Chlorella vulgaris</i> <i>Azospirillum brasiliense</i>	Ammonium and phosphorous ions	Alginate
<i>Scenedesmus intermedius</i>	Phosphorus and nitrogen	Alginate
<i>Scenedesmus</i> species	Ammonia-nitrogen and Orthophosphate	Alginate
Green microalga (<i>Chlorella vulgaris</i>)	Ammonium, phosphate	Calcium alginate
Algal (<i>Chlorella vulgaris</i> and <i>Azospirillum brasiliense</i>)	Ammonium, phosphate	Alginate
<i>Spirulina maxima</i>	Phosphorus, ammonium	Carrageenan beads
<i>Chlorella vulgaris</i> ; <i>cyanobacterium Anabaena doliolum</i>	Phosphate, nitrate, nitrite	Agar beads Alginate beads Carrageenan beads Chitosan beads

Decolonization of industrial dyes

- Dyes are widely used in different industries such as food, pharmaceutical, textile, printing, leather and cosmetic.
- This kind of processes results in discharging highly colored effluents that affect the solubility of the gas in water bodies and the transparency of water.
- Thus, it is essential to remove dyes before discharging these effluents into natural water streams.
- Among microorganisms, fungi are the most efficient in breaking down synthetic dyes

Microorganism	Dye	Immobilizing matrix
<i>Phanerochaete sordida</i>	Basic Blue 22	Plastic disks
<i>Funalia trogii</i>	Acid Black 52	Sodium alginate beads
<i>Pycnoporus cinnabarinus</i>	Remazol Brilliant Blue R	Nylon sponge
<i>Phanerochaete chrysosporium</i>	Poly R-478	Grape seeds, wheat straw, wood shavings
Unidentified basidiomycetous	Orange II	Alginate beads
<i>Bjerkandera adusta</i>	Reactive Black 5	Plastic net
<i>Trametes hirsuta</i>	Indigo Carmine, Phenol Red	Alginate beads
<i>Pseudomonas aeruginosa</i> , <i>Aeromonas eucrenophila</i> and <i>Clavibacter michiganensis</i>	Methylene blue	Cellulose acetate Nano fibrous web
<i>Pseudomonas putida</i> and <i>Bacillus licheniformis</i>	reactive dyes (RR195, RO 72, RY 17, RB 36)	Sodium alginate and polyacrylamide gel beads
Microbial consortium	Azo dye (RED RBN)	Phosphorylated polyvinyl alcohol (PVA) gel
<i>Bacillus subtilis</i>	Methylene blue	Calcium alginate bead
Bacteria (<i>Pseudomonas aeruginosa</i>) and Fungal cells (<i>Phanerochaete chrysosporium</i>)	Reactive dye Procion Blue 2G	Sodium alginate and polyvinyl alcohol
<i>Bacillus firmus</i>	Polyazo dye	Tubular polymeric gel

Electronmicrographs of the immobilized *Candida tropicalis* in the ceramic carrier. (Magnification $\times 3000$.)

Electron micrograph of the immobilized *Saccharomyces cerevisiae* on CLP-Fe. (Magnification $\times 1800$.)

Summary

- *Immobilized cells systems were found to offer a multitude of advantages over suspended cells systems.*
- *For example, cell immobilization enhances the microbial cell stability, allows continuous process operation, simplifies solid–liquid separation and increases the resistance against environmental harsh conditions.*
- *Several studies have been conducted over the years to investigate the efficiency of immobilized cells for the biodegradation of different types of wastewater contaminants.*
- *Various microorganisms showed the ability to biologically degrade these contaminants.*

- *In attempting to improve cell immobilization technology, a new topic under study is the addition of nanomaterials such as iron oxide nanoparticles; it has been proven to have the capability to improve the efficiency of immobilized cells.*
- *Given these points, immobilized cells technology is a promising topic to be further researched with the aim to develop new effective and low-cost carriers, increase biomass concentration and prolong the life of immobilization carriers.*